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Abstract

The molecular and phenotypic associations between chemo- or radio-resistance and the acquisition
of epithelial-mesenchymal transition (EMT)-like phenotype are tightly related in cancer cells.  Wnt/β-
catenin and NF-κB signaling pathways play crucial roles in EMT induction.  Apicidin-resistant (Apicidin-
R) HA22T cells are known to activate the Wnt/β-catenin signaling pathway and MMP-2 expression via
the IGF-IR/PI3K/Akt signaling pathway to enhance metastatic effects of cancer cells.  In this study, we
further investigated if Apicidin-R HA22T cells actually underwent EMT.  In Apicidin-R HA22T cells,
E-cadherin protein level was reduced but Vimentin, Snail and Twist were significantly activated.
Activation of p-IKKαβ and p-IκBα was also observed in Apicidin-R HA22T cells.  Apicidin-R HA22T
cells displayed even higher NF-κB nuclear accumulation.  Snail was enhanced but GSK3-β was reduced.
However, unphosphorylated GSK3-β protein level was totally reversed when the Snail-specific siRNA
was applied in a knockdown experiment.  Taken together, Apicidin-R HA22T cells could potentiate
aggressive metastasis behavior due to up-regulation of Snail expression and promoted EMT effects via
the IKKαβ/NF-κB pathway.  In addition, Snail might decrease the GSK3-β level resulting in extraordinarily
activation of Wnt/β-catenin signaling pathway.
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Introduction

Epithelial-mesenchymal transition (EMT) has
been recognized for several years as critical for em-
bryogenesis (24); the process has recently been shown
to be also relevant to cancer progression (25).  Cells
that undergo EMT during tumor invasion are charac-
terized by the loss of cell-cell adhesion such as E-
cadherin and polarity accompanied by cytoskeleton
rearrangements and increased cell motility (1, 24,
25).  During EMT of in situ cancer cells, mesenchymal
markers such as vimentin, fibronectin, N-cadherin
and the metalloproteinases MMP-2 and MMP-9 can
be acquired, resulting in enhanced ability for cell mi-
gration and invasion (20).

In addition, mesenchymal cells have a spindle-
shaped, fibroblast-like morphology, whereas epithelial
cells grow as clusters of cells that maintain complete
cell-cell adhesion with their neighbors.  E-cadherin is
most abundantly expressed in epithelial phenotype.
E-cadherin levels become limiting, due to chemore-
sistance, which results in the loss of E-cadherin-
dependent intercellular epithelial junction complex
and the abolishment of E-cadherin-mediated seques-
tering of β-catenin in the cytoplasm (43).

Previous studies have suggested that there are
molecular and phenotypic associations between
chemo- or radio- resistance (37, 41) and the acquisition
of EMT-like phenotype of cancer cells (12, 13, 19,
49).  The zinc-finger Snail homologues, Snail1, Snail2/
Slug and Snail (28, 43), and several basic helix-loop-
helix (bHLH) factors such as Twist, ZEB1, ZEB2/
SIP1 and TCF3/ E47/E12 are factors that transcrip-
tionally repress E-cadherin (36).  The Snail family of
transcriptional repressors not only regulates various
aspects of EMT during embryonic development but
also participate in tumor progression (30).  In mam-
malian cells, Snail has been reported to be a direct
repressor of transcription of the E-cadherin gene and
Snail expression induces full EMT and increases
migration/invasion in different physiological and
pathological situations (2, 4, 35).  The bHLH transcrip-
tion factor Twist represses the E-cadherin promoter
and gene transcription (43).  Activation of Twist ex-
pression has been positively correlated with an ag-
gressive cancer phenotype and poor patient survival
(14, 25, 50).  The vimentin (VIM) gene encodes a cy-
toskeletal protein that is a part of the large inter-
mediate filament (IF) gene family, which is abundant
in mesenchymal cells.  Vimentin expression has often
been described as the end-stage progression in EMT,
representing the completely dedifferentiated state in
tumor cells that are highly proliferative and invasive
(1, 25, 26).  In addition, using tissue microarray
analysis, vimentin was found to be expressed in 21
out of 272 breast cancer cases and correlated positively

with tumor grade (24).
NF-κB is a structurally conserved family of

dimeric transcription factors distinguished by the
presence of an N-terminal 300-amino acid region,
termed the Rel homology domain (RHD), which
contains sequences mediating dimerization, DNA
binding, nuclear localization and interaction with the
inhibitory IκB proteins (8).  In most cells, inactive
NF-κB protein is sequestered in the cytoplasm in a
complex with an inhibitor protein, termed IκB.  Acti-
vation of NF-κB typically involves the phospho-
rylation of IκB by the IκB kinase (IKK) complex,
which results in IκB degradation.  This releases NF-
κB and promotes it to translocate freely to the nucleus
(10).  The genes regulated by NF-κB include those
involved in cell death, apoptosis, proliferation, inflam-
mation, the innate- and adaptive-immune responses,
the cellular-stress response and tissue remodeling (3,
7, 10, 32, 34, 51).

The activation of NF-κB is known to play critical
roles in the processes of EMT, tumor cell invasion and
metastasis (28).  Inhibition of NF-κB activities reduces
tumor cells invasion (40).  NF-κB is critical for pro-
moting and maintaining a mesenchymal phenotype in
the transcription of mesenchymal genes encoding vi-
mentin, MMP-2 and MMP-9 (28).  GSK3 inhibition
stimulates transcription of the human Snail gene which
is mediated through NF-κB signaling (1).  NF-κB has
been identified as the upstream regulator of Snail
expression during EMT of human breast cancer cells
via overexpressing a constitutively active Type I
insulin-like growth factor receptor (IGF-IR) (21).
However, inhibition of NF-κB signaling can reverse
the induction of Snail transcription during EMT.  Thus,
NF-κB plays a crucial role in the regulation of the Snail
gene transcription.  Twist is a direct transcriptional
target of NF-κB (16, 33, 44).  Overexpression of NF-
κB in breast cancer cells induces vimentin expression
and a more mesenchymal phenotype (46).  Moreover,
NF-κB is responsible for the activation of MMP-9
transcription (11).  Therefore, NF-κB is a key mediator
that promotes an invasive phenotype.

In hepatocellular carcinoma (HCC), multiple
molecular alterations ensure the progressive growth
of tumor cells.  Rapid tumor growth is closely linked to
chemotherapy resistance (42).  Chemoresistance is the
major problem affecting HCC therapy; there is no
effective chemotherapy for HCC because the tumor
cells develop resistance to cytotoxic drugs.  Apicidin is
a novel histone deacetylase (HDAC) inhibitor derived
from a fungal metabolite (23, 27, 45).  Apicidin has
been reported to have a potent broad spectrum of anti-
proliferative activity against various cancer cell lines
(9, 22, 47).  The combination of apicidin and doxo-
rubicin enhances the antitumor effects of doxorubicin
on caspase activation and tumor growth in HCC (26).
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However, the growth-inhibitory concentrations of
apicidin in HCC were higher than in other cancer cell
lines (10).  Therefore, the induction of side effects and
chemoresistance by apicidin could be expected in HCC
treatment.  Here, we aimed to firstly investigate if
apicidin-resistant (Apicidin-R) HA22T hepatocellular
carcinoma cells could potentiate aggressive metastasis
behavior due to the up-regulation of expression of
Snail family proteins and promote EMT effects via the
IKKαβ/NF-κB pathway.  Secondly, we investigated
whether Snail decreased the GSK3-β to result in the
activation of the Wnt/β-catenin signaling pathway.

Materials and Methods

Cell Culture

HA22T cells were maintained in Dulbecco’s
minimum essential medium (D5523, Sigma, MO,
USA) containing 10% charcoal treated FBS (Char-
acterized Fetal Bovine Serum, HyClone, Thermo
Scientific, UT, USA) and 1% penicillin (Invitrogen
Corp., CA, USA).

Establishment of Apicidin-R HA22T Hepatocarcinoma
Cell Line

To establish stable liver cancer cell lines chroni-
cally resistant to apicidin, HA22T cells were exposed
to increasing concentrations of apicidin.  HA22T
cells were first exposed to 5 µM apicidin, which re-
sulted in greater than 95% cell death.  Once surviving
cells reached 80% confluence, they were passaged
twice in this same concentration of apicidin, after
which the process was repeated at gradational doses
of apicidin until a cell population was selected that
demonstrated at least a 3-fold greater IC50 to apicidin
than the parental HA22T cell lines.

Whole Cell Extract

The cells were extracted in a cell lysis buffer (50
mM Tris-base, 0.5 M NaCl, 1.0 mM EDTA, 1% NP40,
1% Glycerol, 1 mM β-mercaptoethanol, Proteinase K
inhibitor).  The extracts were clarified by centrifugation.

Lowry Protein Assay

After obtaining the whole cell extracts, Lowry
assay (6) is used to determine protein concentrations
in these protein samples.

Western Blotting

Cultured cells were lysed with lysis buffer (250
mM sucrose, 50 mM Tris-HCl, 5 mM imidazole, 2.5

mM EDTA, 2.5 mM DTT, 0.1% Tritons X-100, pH
7.40) and protein concentration was measured using
the Lowry protein assay.  An aliquot of each sample
equivalent to 30 µg protein was boiled after addition
of the appropriate amount of 5× sample buffer (5 mM
EDTA, 162 mM DTT, 5% SDS, 50% glycerol, 0.5 l
bromophenol blue, 188 mM Tris, pH 8.8).  The samples
were separated on 10% SDS-polyacrylamide gels
(SDS-PAGE) and electrophoretically transferred onto
nitrocellulose filters using the Bio-Rad electrotransfer
system (Bio-Rad Laboratories, Munich, Germany).
Equal transfer was verified by Ponceau S staining of
the Apicidin-R HA22T cells activate membranes.
Antigen-antibody complexes were visualized with
HRP-coupled secondary antibodies (goat anti-mouse
and goat anti-rabbit, Santa Cruz Biotechnology, CA,
USA) and a custom-made ECL detection system (2.5
mM luminol, 0.4 mM para-coumaric acid, 10 mM
Tris base, 0.15 l H2O2, pH 8.5).  We used the following
antibodies against β-actin (C4), E-cadherin, GSK-3β
(H-76), HDAC1 (C-19), IKKα/β (H-470), p-IKKα/β
(Ser176), NF-κB p65 (A), Snail, twist (Twist2C1a),
α-Tubulin(B-7), Vimentin (RV202), purchased from
Santa Cruz Biotechnology.  Antibodies against p-
IκB-α (Ser32) (14D4) and p-NF-κB p65 (Ser536)
were purchased from Cell Signaling Technology
(Beverly, MA, USA).

Cytoplasmic and Nuclear Fractionations

Cell cytoplasmic and nuclear fractions were
obtained with the Extraction Reagent, lysis buffer A
(50 mM Tris-base, 0.5 M NaCl , 1.0 mM EDTA, 1%
NP40, 1% Glycerol, 1 mM β-mercaptoethanol, Pro-
teinase K inhibitor and lysis buffer B (50 mM Tris-
base, 0.5 M NaCl, 1.0 mM EDTA, 1% Glycerol, Pro-
teinase K inhibitor).  In brief, 5 × 106 cells were
trypsinized (0.05% trypsin/0.53 mM EDTA) and
resuspended in 100 µl lysis buffer B.  After 10-minute
ice-cold incubation, each sample was centrifuged at
3000 g 10 min to pellet the nuclear proteins.  After
centrifugation, the supernatant was stored for use as
the cytoplasmic Apicidin-R HA22T cells activate
Snail via NF-κB fraction, and the nuclear fraction
was lysed with 100 µl lysis buffer A.

Small Interfering RNA (siRNA) Transfection

Transient transfections were carried out by the
proprietary cationic polymer reagent TurboFect™ in
vitro Transfection Reagent (Fermentas, Thermo Scien-
tific, UT, USA) following the manufacturer’s instruc-
tions.  Double-stranded siRNA sequences targeting
Snail mRNA were obtained from Santa Cruz Biotech-
nology.  The non-specific (scramble) siRNA consisted
of non-targeting sequences.  Cells were cultured in 60-
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mm dish plates in appropriate medium.  Transfection of
siRNA was carried out with TurboFect™ transfection
reagent.   Specific silencing was confirmed by immuno-
blotting with cellular extracts after transfection.

Statistical Analysis

Each sample was analyzed based on results that
were repeated at least three times and the SigmaPlot
10.0 software and standard t-test were used to analyze
each numeric data.  In all cases, differences at P <
0.05 were regarded as statistically significant; values
at P < 0.01 or P < 0.001 were considered highly sta-
tistical significances.

Results

Mesenchymal Markers Were Significantly Activated in
Apicidin-R HA22T Cells

To confirm whether Apicidin-R HA22T cells
underwent EMT, we determined the expression of

markers of epithelial and mesenchymal phenotypes.
In Apicidin-R HA22T cells, E-cadherin protein level
was not only reduced but those of Vimentin, Snail and
Twist were significantly activated when compared to
the parental HA22T cells (Fig. 1).

The IKKαβ/NF-κB Pathway Was Significantly
Activated in Apicidin-R HA22T Cells

In order to investigate whether the IKKαβ/NF-κB
pathway was affected in Apicidin-R HA22T cells, p-
IKKαβ and p-IκBα were examined.  Indeed, activation

Fig. 1. Activation of the expression of mesenchymal markers in
Apicidin-R cells.  (A) Western blot analysis showing the
expression of markers of the epithelial and mesenchymal
phenotypes.  (B) For E-cadherin, values were quantified
as fold of Apicidin-R values relative to the parental
HA22T cells levels.  P = 0.06, n = 3.
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of p-IKKαβ and p-IκBα was observed in Apicidin-R
HA22T cells (Fig. 2A).  Apicidin-R HA22T cells also
displayed greater extents of NF-κB nuclear accumu-
lation when relative to the HA22T cells (Fig. 2B).

Extraordinarily Activated β-Catenin Was Mediated
Through the Snail Protein of the EMT Marker in
Apicidin-R HA22T Cells

To confirm a direct mechanistic role of β-catenin
in Apicidin-R HA22T cells showing EMT character-
istics, expression of Snail proteins was knocked-down
in Apicidin-R HA22T cells using specific siRNA.  Not
only the Snail protein level was significantly enhanced
but GSK3-β was significantly reduced when relative
to Apicidin-R and parental HA22T treated with the
same siRNA.  The activated GSK3-β protein level was

Fig. 3. Down-regulation of Snail induced reversal of the suppression of GSK3-β in Apicidin-R cells.  (A) Western blotting showing
the Snail, Vimentin, GSK3-β, β-catenin and β-actin expression levels of Apicidin-R cells after transfection with Snail siRNA
(50 and 100 nM).  (B) The expression levels were qualified by normalizing to the expression level of β-actin used as the inter-
nal control relative to the parental HA22T cells.  n = 1.

50 100 50 100

Apicidin-RApicidin-R HA22THA22T

29 kDa

nM

67 kDa

43 kDa

47 kDa

92 kDa

A 

Snail -

Snail siRNA

Vimentin -

GSK3-β -

S
na

il/
β-

ac
tin

G
S

K
3-

β/
β-

ac
tin

β-
ca

te
ni

n/
β-

ac
tin

GSK3-β

β-catenin

β-catenin -

β-actin -

2.5

2.0

1.5

1.0

0.5

0.0

Snail siRNA

HA22T Apicidin-R HA22T

Snail

Apicidin-R

50-- 100 50 100 nM

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Snail siRNA

HA22T Apicidin-R HA22T Apicidin-R

50-- 100 50 100 nM

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Snail siRNA

HA22T Apicidin-R HA22T Apicidin-R

50-- 100 50 100 nM

B



Activation EMT Signaling via NF-κB in Apicidin-Resistant HA22T HCC 331

totally reversed when the Snail specific siRNA was
used (Fig. 3).  The total β-catenin protein level was
greatly decreased after high doses of Snail siRNA were
applied (Fig. 3).  However, the level of Vimentin was
not significantly changed in Apicidin-R HA22T cells
with or without Snail siRNA treatment (Fig. 3).

Discussion

The change from a non-invasive to an invasive
and malignant phenotype is a critical step in tumor
progression and metastasis (17, 18).  Wnt/β-catenin
and NF-κB signaling pathways are well known for
EMT induction (28, 48).  Our previous data suggested
that Apicidin-R HA22T cells activated the Wnt/β-
catenin signaling pathway and MMP-2 expression via
the IGF-IR/PI3K/Akt signaling pathway to en-
hance tumor metastatic effects (15).  Therefore, we
further investigated if Apicidin-R HA22T cells under-
went EMT.  We first determined the protein level of
epithelial and mesenchymal phenotype markers.  In
Apicidin-R HA22T cells, there was not only reduced
E-cadherin protein level but also significantly ac-
tivated Vimentin, Snail and Twist when compared to
the parental HA22T cells (Fig. 1).  This result sug-
gested that Apicidin-R HA22T cells might actually
undergo EMT phenomenon.

Multiple important transcription factors, such
as Snail and Twist, have been shown to suppress
epithelial gene expression resulting in EMT induction
(5, 37).  Moreover, these factors are regulated either
directly or indirectly by NF-κB.  Therefore, we inves-
tigated whether the IKKαβ/NF-κB pathway was af-
fected in Apicidin-R HA22T cells.  Indeed, activation
of p-IKKαβ and p-IκBα was observed in Apicidin-R
HA22T cells (Fig. 2A).  Apicidin-R HA22T cells dis-
played even higher NF-κB nuclear accumulation when
relative to the HA22T cells (Fig. 2B).  These results
strongly suggest that activation of IKKαβ/NF-κB
pathway is closely linked to the induction of EMT
phenomenon in Apicidin-R HA22T cells.

Wnt/β-catenin signaling is associated with EMT-
mediated metastasis and is highly correlated to prog-
nostic values in cancer (31, 39).  To confirm a direct
mechanistic role of β-catenin in Apicidin-R HA22T
cells with EMT characteristics, we knocked down the
expression of Snail using specific siRNA.  Under
such treatment, Apicidin-R HA22T cells not only
abundantly enhanced Snail protein levels but also
greatly reduced GSK3-β when compared to the pa-
rental HA22T cells.  However, the activated GSK3-β
protein level was totally reversed when on Snail-
specific siRNA knockdown (Fig. 3).  As expected, the
total β-catenin protein level was greatly decreased
when high doses of Snail-specific siRNA were applied
(Fig. 3).  All these results indicate that Snail may play

a negative regulatory role on GSK3-β and enhances
the Wnt/β-catenin signaling pathway.

In summary, our results strongly suggest that
Apicidin-R HA22T cells could potentiate aggressive
behavior due to the up-regulation of Snail expression
and the promoted EMT effects via the IKKαβ/NF-κB
pathway.  In addition, Snail may decrease the GSK3-
β levels which results in the activation of the Wnt/β-
catenin signaling pathway (Fig. 4).
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